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Motivation: Imitation Learning

Online Reinforcement Learning
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Motivation: Offline RL

e Robot learning at scale requires learning from diverse and highly suboptimal data
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Offline RL with noisy data:
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1. Kumar, Aviral, et al. "When should we prefer offline reinforcement learning over behavioral cloning?." arXiv preprint arXiv:2204.05618 (2022).



Problem Statement

For a Markov decision process (S, A, r(), p()), given a fixed dataset D of reward-labeled
suboptimal environment interaction tuples, the goal is to learn to maximize the
expected discounted return under a learned policy 1
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Background: Diffusion Models
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e Aclass of generative models based on learning to ‘denoise’ to go from a prior
distribution to a sample from the data distribution.

e Outperforms GANs & VAEs at modeling complex, multi-modal distributions.

e Connected to denoising score matching and Langevin dynamics.



Background: Diffusion Models
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e Starting from image x,, sample ¢ ~ (0,1),t ~ Uniform[1,T]

e Compute noisy image x, = |/a,x, ++/1 — &,¢

e Compute denoising loss
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Background: Diffusion Policies

e Use diffusion model to predict receding horizon
trajectories from images.

e Impressive results on wide range of complex
multi-task settings

e Models diverse multimodal demonstrations well

e Problem: only BC = cannot exceed suboptimal
demonstrations!

Diffusion Policy LSTM-GMM

1. Chi, Cheng, et al. "Diffusion policy: Visuomotor policy learning via action diffusion." arXiv preprint arXiv:2303.04137 (2023).



Related Works: Diffusion + RL

e Diffusion QL [1]: Offline RL + BC where the policy is represented as a DDPM

o . meesses

o During training it differentiates through the diffusion MC which is expensive

e Efficient Diffusion Policy [2]: approximates the diffusion chain in a way that
compromises some multimodality properties, not scalable!

e Consistency policy [3] replaces the diffusion model with a consistency model
o Not as expressive as a diffusion model for more difficult tasks!

Can we design an efficient algorithm without introducing detrimental approximations?

1. Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning. ICLR 2023.
2. Kang, B., Ma, X., Du, C., Pang, T., & Yan, S. (2023). Efficient Diffusion Policies for Offline Reinforcement Learning. arXiv [Cs.LG].
3. Ding, Z., & Jin, C. (2023). Consistency Models as a Rich and Efficient Policy Class for Reinforcement Learning. arXiv [Cs.LG]. Retrieved from http://arxiv.org/abs/2309.16984



Key ldea
These algorithms struggle because they can only evaluate the denoising network
based on final, noiseless, actions at the end of the diffusion denoising process

On the other hands, diffusion models learn by computing meaningful gradients
throughout the diffusion chain

We need a method to evaluate noisy actions throughout the diffusion chain so that we
can improve the denoising process throughout



Consistency Models

e Consistency models [1] learn to predict denoised Data Noise
samples from anywhere in the denoising chain L LE

e Decent quality single step samples, also supports
iteratively refining for better quality if desired

Our Idea:

e Learn a consistent critic, which can accurately predict Q-values at any point in the
diffusion chain

e Use the consistent critic to update the policy without differentiating all the way through
the diffusion chain

a, ar

1. Song, Y., Dhariwal, P., Chen, M., & Sutskever, I. (2023). Consistency models. ICML 2023



Consistent Q Learning: 1QL Critic

e Problem: diffusion models are expensive to query, and a typical Bellman backup-style
critic update requires querying the policy to get critic targets
e Solution: IQL [1] learns a critic without querying the current policy by maximizing an

expectile over the dataset
o Value function maximizes expectile over dataset, where L3 (u) = |7 — 1(u < 0)|u?

LV(¢) — IEE(s,a) ~D [LE(QQA(S, CL) - Vw(s))]
o Update critic using the value function

LQ(0) = E(s,a,5) ~0l(r(s,a) +7Vi(s') — Qo(s,a))]

Kostrikoy, I., Nair, A., & Levine, S. (2021). Offline Reinforcement Learning with Implicit Q-Learning.



Consistent Q Learning: Consistent Critic

. Q,(s,a',1)
Qys,a%)

e Parameterize Q(p using a similar trick to [1]

0,(s,a',1) = cgi,(DQy(s, a") + Cou(DF, (s, a’, 1)

e Sample t, compute &', take one denoising step to compute a’ and train according to
consistency loss

Z(@) = MSE (Qq,(s, =t —1),0,(s a", t))



Consistent Q Learning: Policy Update

Q,(s,a’, 1)

e Compute noisy action a' and denoise by one step to a*’
e Use the consistent critic to compute an advantage weighted denoising update

Advantage weighting Action denoising loss

________________________________



Experiments

We perform experiments to test following hypotheses:

1. CoQL is comparable with or improves upon baseline results
o D4RL

2. Consistent critic provides more accurate Q-value estimations at noisy actions
o Using original critic (not trained on noisy actions) ablation

3. CoQL performs better than baselines on high-dimensional tasks, as we don'’t have to
approximate the diffusion process
o Dexterous tasks



Domains

e DA4RL [1] is a widely used offline RL benchmark
e Locomotion environments

o Hopper, Walker2D, Half-Cheetah

o medium, medium-replay, medium-expert
e Adroit

o Repositioning Pen

o High-dimensional
e Kitchen

o Very multimodal

o Requires trajectory stitching to solve
e Navigation:

o Sequence of actions

o Opt, noisy, slow, slow-noisy

Start =2

1. J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven reinforcement learning, 2020



Results

D4RL:

Environment DQL EDP  No Consistent CoQL (tune) CoQL (best)
halfcheetah-medium-v2 0.508 =0.005  0.521 0.545+0.003  0.608 +0.006 0.511 4+ 0.001
hopper-medium-v2 0.822 +0.030 0.819 0.690+0.032  0.685£0.095  0.685 £ 0.095
walker2d-medium-v2 0.871+£0.006 0.869 0.432+0.198 0.863+£0.014  0.822+0.013
halfcheetah-medium-replay-v2  0.474 £+ 0.001 0.494 0.512 £ 0.004 0.532 +0.013 0.467 £ 0.016
hopper-medium-replay-v2 1.004 £ 0.003 1.010 1.025+0.003 0.898 £ 0.135 0.898 + 0.135
walker2d-medium-replay-v2 0.871 £ 0.071 0.949 0.902 £ 0.002 0.833 £ 0.051 0.803 £ 0.018
halfcheetah-medium-expert-v2  0.953 £ 0.011  0.955 0.958 £0.024 0.734+£0.202  0.390 £ 0.089
hopper-medium-expert-v2 1.061 £ 0.067 0974 0.177 £ 0.052 0.792 £ 0.391 0.694 + 0.189
walker2d-medium-expert-v2 1.099 £ 0.001 1.102 1.012 £+ 0.082 1.029 + 0.017 1.029 + 0.017
Average 0.853 0.869 0.717 0.793 0.708
pen-human-v1 0.590 £0.106  0.727 0.712+0.156  0.657 £0.213  0.657 £ 0.213
pen-cloned-v1 0.452 £ 0.130 0.700 0.558 4+ 0.057 0.66 £ 0.163 0.611 +0.134
Average 0.521 0.714 0.635 0.659 0.634
kitchen-complete-v0 0.775+0.088 0.755 0.742+0.155  0.725+£0.235  0.725 £ 0.235
kitchen-partial-v0 0.528 +£0.078 0528 0.625+0.074 0.717+0.024 0.717 £0.024
kitchen-mixed-v0 0.519+0.047  0.608 0.692+0.042 0.692+0.012 0.625+0.071
Average 0.607 0.630 0.686 0.711 0.689




Results

e Navigation:
o Success rate

Environment BC IDQL No Consistent CoQL
nav-ms-opt 0.933 +0.047 0.8 +0.082 0.933 +0.047 0.933 +0.094
nav-ms-slow-noisy  0.467 + 0.047 0.767 +0.047 0.6 + 0.082 0.6 £0.0
nav-ms-slow 0.767 £ 0.047 0.967 +0.047 0.9 +0.082 0.833 £0.125
nav-ms-noisy 0.3 £0.082 0.667 +0.047 0.6 +0.082 0.633 £+ 0.094
Average 0.617 0.800 0.758 0.750

o Average Reward

Environment BC IDQL No Consistent CoQL
nav-ms-opt —57.833 + 2.151 —63.433 + 5.898 —53.8+3.395 —65.867 + 14.751
nav-ms-slow-noisy —203.733 +£18.184 —181.533+7.376 —186.433 +4.84 —199.8+9.819
nav-ms-slow —150.4 4+ 11.064 —56.633 + 2.53 —63.7 £ 6.255 —68.5 £ 8.702
nav-ms-noisy —110.233 £5.473 —86.367 + 4.203 —103.3 £13.003 —89.533 +6.884

Average -130.5 -97.0 -101.8 -105.9




Conclusion

e |n this project we present consistent Q learning

e The proposed method shows some initial progress but largely struggles to outperform
comparison algorithms

e Results suggest that the original critic also gives “good” value estimates on noisy action,
we suppose this is due to the fact that adding noise smooths out the overall gradient
landscape

e In the future, we plan to
o Explore other policy improvement formulations that may work better than the

advantage weighting objective
o Experiment with more complicated environments where the proposed method may

scale better



Questions?



